
Audio Watermark Attacks: From Single to Profile Attacks

Andreas Lang1, Jana Dittmann1, Ryan Spring2, Claus Vielhauer1

Otto-von-Guericke University of Magdeburg
Advanced Multimedia and Security Lab

Magdeburg, Germany
1{andreas.lang, jana.dittmann, claus.vielhauer}@iti.cs.uni-magdeburg.de

2ryan.spring@student.uni-magdeburg.de

ABSTRACT
A wide range of watermarking evaluation approaches and
especially image benchmarking suites have been described
in the literature. Our paper sets the main focus on the eval-
uation of digital audio watermarking with StirMark Bench-
mark for Audio (SMBA). Here we describe the currently im-
plemented single geometric attacks in detail and introduce
our so-called attack profiles. Profiles reflect an application
oriented point of view ranging from the normal usage of au-
dio content like internet radio or music shops up to typical
attacker scenarios. In particular we present a definition of
an extended profile which is composed of three basic pro-
files specific for annotation watermarks. Furthermore, we
demonstrate how SMBA attacks can be used to evaluate the
transparency of digital watermarking algorithms regarding
the embedding strength. Test results based on an exam-
ple audio watermarking algorithm and the measurement of
transparency and capacity are presented.

Keywords: digital watermarking, audio, attack, stirmark,
smba

1. MOTIVATION
The field of image watermarking covers a wide variety of
attacks, for example in [8] are three main categories sug-
gested: JPEG compression, geometric transformation and
enhancement techniques. The JPEG compression performs
a lossy compression on the image signal which attacks an
embedded watermark. The category of geometric transfor-
mation changes for example the rotation, crops an image
part, scales the image or makes a random geometric dis-
tortion (the StirMark attack). Enhanced attack techniques
include for example low pass filtering, sharpening, noise ad-
dition or print-scanning like a digital to analog conversion.
Recent publications can be classified into four large cate-
gories: [9] distinguishes between removal attacks, geometri-
cal attacks, cryptographic attacks and protocol attacks. Re-
moval attacks try to estimate the watermark (for example

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM&Sec’05, August 01-02, 2005, New York, USA.
Copyright 2005 ACM 1-59593-032-9/05/0008 ...$5.00

by building statistical models) and filtering to remove the
watermark itself. Geometrical attacks try to either destroy
it or prevent its detection. Both the removal and the geo-
metrical attack are mostly aimed at the robustness of the
watermark. Cryptographic attacks cover for example at-
tacks to find the secret key, to perform coalition or collusion
attacks. As summarized in [13], attacks in the last group,
the protocol attacks, do neither aim at destroying the em-
bedded information nor at preventing the detection of the
embedded information (deactivation of the watermark).
Most actual benchmarking approaches already contain a va-
riety of attacks and allow combinations of removal and geo-
metrical attacks. Main challenges are to find the appropriate
attack strength and relevant attack combinations depend-
ing on the application and the security goals. The attackers
can have a different motivation and different strategy to at-
tack the watermark. We distinguish between two types of
attackers. The first type of an attackers (α), use a single
specific or a combination of audio signal modifications to
destroy the watermark or to confuse the detection process
explicitly. These attackers are malicious and can be clas-
sified as powerful. The other type of attackers (β) use the
audio signal in a normal environment, they produce single
or combined a audio signal modifications implicitly with-
out the goal to destroy the watermark (for example lossy
compression or DA/AD). These attackers are non-malicious
and they are not interested in attacking the digital audio
watermark explicitly.

In our paper, we summarize and classify the current SMFA

attacks for audio which could be used by both types of at-
tackers (α and β). Based on the single attacks we design
application oriented attack profiles. The paper is organized
as follows:
The StirMark Benchmark for Audio (SMBA) tool contains
currently a set of 39 single geometric attacks, described in
detail in section 2. Section 3 describes profile attacks and
discusses profile applications. Furthermore, the extended
annotation profile and the assigned basic profiles are in-
troduced and discussed. Section 4 introduces the test re-
sults regarding the basic profiles transparency and capacity
measurement for an example watermarking algorithms. We
summarize the paper in section 5 with conclusions and di-
rections for further work.

2. SMBA ARCHITECTURE AND SINGLE
ATTACKS

This section introduces briefly the SMBA architecture and
the concept of single attacks. Our general design goal was
to simulate the most relevant types of signal modifications
known from the audio editing tools and audio production.
These modifications could be used from our both types of
attacker α and beta, as malicious and non-malicious attacks.

Note, that in this paper we use the following notation: SMBA
stands for the overall benchmarking system and SMFA de-
notes the single attack module. The architecture of SMBA
consists of four different types of modules. First, the attack
module SMFA itself, second the read write stream module
to convert audio files into streams and back into files, which
is needed for input and output of audio signals. The third
module SM-Bell is a wrapper for SMFA and read write to
make it easier to use. The fourth module SM-Bell GUI is
a graphical user interface for SM-Bell. Figure 1 shows the
modules and the module dependencies. The line between
the read write process and SMFA and the other SMFA pro-
cesses is a symbol for a pipe. The audio file is read by the
read write module. The audio data are given to the first
SMFA process which runs the first attack. The resulting
audio signal of this process is the new input for the second
SMFA process and so on. At the end of the pipes can be
the read write module to save the audio signal in an audio
file. If the user does not want to store the audio signal in a
file, then the audio stream can be sent to the sound device
to play it.

...Read/Write Read/Write

SM−Bell

SM−Bell_GUI

SMFA SMFA SMFA
Stream Stream

Figure 1: Modules of SMBA

The main benchmarking process is SMFA, the attack pro-
cess, where a selected single attacks is running (or concate-
nations of single attacks) to change the audio signal. In this
paper, we set our main focus on this module (SMFA).
Due to the design of our system, by running one single pro-
cess, it is only possible to run one single attack on the audio
signal. If it is feasible to run more than one attack on the
audio signal, it is simple to use multiple instances of SMFA.
This is possible by connecting the stdout of one SMFA pro-
cess with the stdin of the following SMFA process by using
a pipe. Another advantage of using SMFA for multiple at-
tacks is, that each attack runs in its own SMFA process and
the operating system can independently allocate each pro-
cess to a processing unit. This is especially advantageous if
there are multiple processing units available.

The following subsection classifies and introduces the single
attacks of the SMFA module in more detail.

2.1 Current single attacks in SMFA
In this subsection, we introduce the single attacks of SMFA.
In particular, we show the available attack functions in detail
and classify these attacks into three different attack classes.

From the overall point of view, a digital audio signal S de-
pends on different parameters based on the capturing and
sampling processes (with the following default values for
SMBA):

• Sampling Frequency: fSR = 44.1 kHz

• Sampling Quantization: 16 bits (MaxQanti−
zation = 216)

• Number of channels: 2 (stereo)

Based on the digital audio representation, we differ between
time and frequency domain. The frequency domain repre-
sentation can be provided by transforming the time domain
audio signal into the frequency domain for example by using
a Fourier transformation [1]. As notation for the attacks of
SMFA working in time domain, we use Si(x) as input signal
for SMFA (marked audio signal) and So(x) as output signal
from SMFA which is the attacked, modified, marked audio
signal. The value x is the sample value at a discrete point
of time in the input and output stream, we use x = x(ti).
The value f denotes one frame that contains n sample val-
ues x, f = {x(t0), x(t1), · · · , x(tn−1)}, ti, i = 0 . . . n − 1,
n ∈ N, n=framelength. Avg(f) is the average of all sample
values for all channels within the frame f . As notation for
the attacks of SMFA working in frequency domain, we use
Fi(x) to identify the frequency input signal and Pi(x) to
identify the phase of the signal represented in the frequency
domain. Furthermore, we use Fo(x) and Po(x) as the cor-
responding output signal in frequency domain. The attacks
in the frequency domain are parameterized with a window
size (FFTSize) equal to frame size f for the Fast Fourier
Transformation used for processing. As a default value we
use a size of 1024 samples. To scale the attacks, we intro-
duce an attack strength scalar value AS which specifies the
strength of the attack performed on the audio signal.

The motivation for all attacks in SMFA is to destroy or
weaken the embedded watermark signal, as Kutter et. all [9]
described for geometric attacks. From the signal processing
point of view, we can classify the SMFA attacks into three
attack classes. The first class adds or removes a signal k

to or from Si(x): So(x) = a ∗ Si(x) + b ∗ k(t). The value
a scales the input audio signal and the value b scales k(t)
to a specific limit. The second class can be described as
filter attacks: So(x) = FAttack(Si(x)), where FAttack is the
corresponding attack from this attack class. The third at-
tack class can be seen as modification attacks, by modifying
the overall structure of the signal representation for exam-
ple the overall length of the audio signal or shifting audio
samples: So(x) = MAttack(Si(x)). Table 1 summarizes all
current single attacks of SMFA into these three classes by
indicating time and frequency domain.

In the following, we describe the single attacks of the three
attack classes in more detail. The indicated range of the pa-
rameters is the normal used parameter range, derived from

Table 1: Classification of SMFA attacks
Add/Remove Attacks Domain Filter Attacks Domain Modification Attacks Domain

So(x) = a ∗ Si(x) + b ∗ k(t) So(x) = FAttack(Si(x)) So(x) = MAttack(Si(x))

AddBrumm Time Amplify Time Invert Time
AddSinus Time Normalizer1 Time FFT Invert Frequency
AddNoise Time Normalizer2 Frequency CopySample Time

AddDynNoise Time Compressor Time FlippSample Time
AddFFTNoise Frequency BassBoost Time CutSample Time

NoiseMax Time RC-HighPass Time ZeroCross Time
Denoise Time RC-LowPass Time ZeroLength1 Time
LSBZero Time FFT HLPassQuick Frequency ZeroLength2 Time

Echo Time Stat1 Time ZeroRemove Time
Stat2 Time PitchScale Frequency

FFT Stat1 Frequency DynamicPitchScale Frequency
Smooth1 Time TimeStretch Frequency
Smooth2 Time DynamicTimeStretch Frequency

Exchange Time
Resampling Time
ExtraStereo Time
VoiceRemove Time

empirical tests. Of course, there are values out of range pos-
sible, but it makes no sense because of the disturbed audio
output signal.

2.1.1 Add/Remove Attacks
The attack AddBrumm adds a buzz as sinus tone to Si(x) to
simulate the buzz of a power supply unit of analog devices.
The distortion signal can be described as k(t) = sin(2 ∗ Π ∗
Frequency), b = AS, a = 1 and Frequency is the frequency

of the buzz sound in range of
h

1, fSR

2

i

. As default value, we

chose Frequency = 55 Hz.

In contrast, AddSinus works with a different frequency (Fre−
quency = 3000 Hz): it adds a sinus tone to Si(x) in a higher
frequency band. This attack is useful to simulate various
sinusoidal audio phenomena or to add a distortion signal in
exactly the same frequency range like the watermark em-
bedder.

The attacks AddNoise, AddDynNoise, AddFFTNoise and
NoiseMax add a noise to Si(x). AddNoise adds a white noise
generated from a pseudo noise random generator (PN). The
attack can be described as
k(t) = PN(t) mod AS, a =

“

1 − AS

MaxQuantization

”

and b =

1. The strength of this attack is constant for the whole
duration and specified by the attack parameter. The at-
tack AddDynNoise is similar to AddNoise. The difference
is, that AddDynNoise adds a dynamic noise, generated from
PN that depends on the signal amplitude of Si(x). This
attack is useful for simulating certain noise effects found
in analog audio equipment and can be described as k(t) =

PN(t) mod
“˛

˛

˛
Si(x) ∗ AS

100

˛

˛

˛
+ 1

”

where t is the time, which

controls PN and a = 1, b = 1. The AddFFTNoise is similar
to the AddNoise attack by changing the domain from time to
frequency domain: Fo(x) = Fi(x) + PN(t) mod (AS). The
attack NoiseMax adds a Maximum Length Sequence (MLS)
based on [14] to Si(x): k(t) = MLS(Mask, Length), b = AS

with Mask = 23 and Length = 1365. In this class of at-

tacks, we plan to add attacks, which use alternative noise
models like pink or brown noise.

The Denoise attack is the opposite of AddNoise and removes
noise from Si(x).

LSBZero removes the least significant bit plane by setting
all least significant bits (LSB) to zero: So(x) = Si(x) ∧
(MaxQuantitization() − 1).

Echo adds an echo to Si(x). The echo produces an echo
delay of Distance samples and adds them with half of loud-
ness: a = 2, b = 2, k(t) = Si(x + Distance). The Distance

can be in a range [1, xn] where xn is the last sample value in
Si(x). a and b set the loudness of the echo and 1

a
+ 1

b
5 1 to

avoid distortion. This attack meant to test watermarking
algorithms that hide information in echos in the signal or
test the watermark against echo attacks.

2.1.2 Filter Attacks
All filter attacks perform a kind of filtering operation
FAttack(Si(x)) depending on the attack itself and on the
audio signal Si(x).

The Amplify attack increases or decreases the amplitude
of the audio signal to simulate an amplification: So(x) =

Si(x)∗ AS

100
. AS is the percent increase or decrease percentage

with 100 being neutral (default AS = 50).

The Normailzer1 and Normalizer2 change also the ampli-
tude, but introduce a normalization. Normalizer1 normal-
izes Si(x) based on local or cumulative peak information
and simulates various real-time normalizer devices in time
domain. The value Level is the quantitization step that the
samples are to be normalized to (in a range of
[1, MaxQuantization] with a default value of Level = 28000
for a 16 bit audio signal) and Zeroing is a boolean switch to
switch between local and cumulative peak finding (0 = local
(default), 1 = cumulative). The function Peak(x) finds the

maximum peak value in the buffer of the audio signal and
PreviousPeak specifies the found maximum from all buffers
before: So(x) = Si(x) ∗ Level

Peak(Si(xj),Zeroing,PreviousPeak)
and

j = 0, 1, . . . , BufferSize.
The attack Normalizer2 is similar to Normalizer1, but works
in the frequency domain. Additionally, the audio signal is
split into two frequency bands, which are normalized inde-
pendently of each other and combined afterwards.

The Compressor attack scales all samples over a given thresh-
old by a given amount. This attack is similar to various
analog compressor devices that are available on the market

So(x) =

(

Si(x) Si(x) ≤ (−ThresholdDB)

Si(x) ∗ CV Si(x) > (−ThresholdDB)

and CV = CompressorV alue specifies the amount of in-
creasing (or decreasing) the sample values (default CV =
2.1) and ThresholdDB specifies the threshold, which de-
fines the attenuation of the maximum possible signal when-
ever the compressor amplification works (default 6.1 dB). If
the CompressorValue CV is less than 1, this attack works
like a compressor. Otherwise, if CV is larger as 1, then this
attack works like an expander.

The attack BassBoost boosts the bass range of the audio sig-
nal, similar to analog bass boosting circuits that are preva-
lent in consumer audio devices depending on a given fre-
quency threshold. This attack uses code from the Open-
Source Media Editor Audacity [20] to compute the coeffi-
cients of the used infinite impulse response filter (IIR).

There are three attacks (RC-HighPass, RC-LowPass and
FFT HLPassQuick), which filter out a special frequency se-
lected by the attack parameters.
RC-HighPass and RC-LowPass simulate an analog Resis-
tor/Capacitor (RC) Pass filter working in time domain and
FFT HLPassQuick works in frequency domain. The algo-
rithm to compute RC-HighPass comes from [18] and is given
as follows: So(x) = A0 ∗Si(x)+B ∗So(x−1)+A1∗Si(x−1)

and B = e
−2π∗Threshold

SampleRate and A0 = 1+B
2

, A1 = − 1+B
2

where
Threshold specifies the high pass frequency threshold and

is in range of
h

1,
fSR

2

i

with a default of Threshold = 150.

The RC-LowPass attack is similar to RC-HighPass, but fil-
ters out low frequencies from Si(x) by computing So(x) =

A ∗ Si(x) + B ∗ So(x − 1) and B = e
−2π∗Threshold

SampleRate and
A = 1 − B. For this attack, the default value of Threshold

is 15000.
The attack FFT HLPassQuick has a sheer flank on the fre-
quency threshold like the other two attacks:

Fo(x) =

8

>

<

>

:

Fi(x) Fi(x) < LowPassFrequency

Fi(x) Fi(x) > HighPassFrequency

0 otherwise

The three attacks (Stat1, Stat2 and FFT Stat1) apply a
statistical average distortion depending on the current and
neighbor sample values of Si(x).
For Stat1 the current sample value depends on itself and the

following sample value: So(x) = Si(x)+Si(x+1)
2

. The Stat2

attack computes the current sample value depending on the
following and predecessor sample value with a given priority:

So(x) = Si(x−1)+3∗Si(x)+Si(x+1)
5

. The attack FFT Stat1 is

similar to Stat1 but works in frequency domain: Fo(x) =
Fi(x−1)+Fi(x+1)

2
.

The two attacks Smooth1 and Smooth2 apply a simple smoo-
thing to Si(x) depending only from the neighbors of the cur-
rent sample value. For Smooth1, the computation is

So(x) =

8

>

<

>

:

Si(x−1)+Si(x+1)
2

Si(x − 1), Si(x + 1) > Si(x)
Si(x−1)+Si(x+1)

2
Si(x − 1), Si(x + 1) < Si(x)

Si(x) otherwise

where both neighbors of Si(x) (Si(x − 1) and Si(x + 1))
have to be higher or lower than Si(x) to perform the attack.
Otherwise, the attack Smooth2 is defined as:

So(x) =

8

>

<

>

:

Si(x−1)+Si(x+1)
2

Si(x − 1) < Si(x) < Si(x + 1)
Si(x−1)+Si(x+1)

2
Si(x − 1) > Si(x) > Si(x + 1)

Si(x) otherwise

where one neighbor of Si(x) (Si(x−1) or Si(x+1)) is higher
and the other one is lower than Si(x) to perform the attack.

2.1.3 Modification Attacks
All modification attacks perform a modification operation
MAttack(Si(x)) depending on the audio signal Si(x). The
general structure of the audio signal is changed after per-
forming an attack from this attack class.

The attack Invert, inverts all sample values in time do-
main by replacing it with its opposite (phase shift of 180◦):
So(x) = −Si(x).

The same does the attack FFT Invert, but in frequency do-
main. FFT Invert inverts (phase shift 180◦) the frequencies
Fo(x) = −Fi(x) and phases Po(x) = −Pi(x). Both attacks
(Invert and FFT Invert) evaluate the watermarking algo-
rithm sensitivity to the right phase of the audio signal.

The CopySample attack inserts copies of a group of samples
at a later point in Si(x) in the time domain. The goal is
to test the watermarking algorithm dependency on quantity
and order of samples. The value C is the number of sam-
ple values, which are copied (range [1, lengthof(Si(x))] with
default C = 2000). DI specifies the distance between the
copy and paste point in the audio signal and is in range of
[C, lengthof(Si(x))] and the default value DI = 6000. The
value Period defines the distance between two copies in the
audio signal and is in range of [DI, lengthof(Si(x))] with a
default value of Period = 10000.

So(x) =

8

>

<

>

:

Si(z) 0 ≤ z < DI

Si(z − DI) DI ≤ z < DI + C

Si(z − C) DI + C ≤ z < Period + C

and z = x mod (Period+C). The length of the audio signal
increases by using this attack.

The FlippSample attack flips a group of samples at a later
point in time of Si(x). This is meant to test watermarking
algorithms for dependance on the order of sample values.

So(x) =

8

>

>

>

<

>

>

>

:

Si(z + DI) 0 ≤ z < Count

Si(z) Count ≤ z < DI

Si(z − DI) Distance ≤ z < DI + Count

Si(z) DI + Count ≤ z < Period

and DI = Distance and z = x mod (Period + Count). By
using this attack the length of Si(x) is equal to the length

of So(x). The range of the parameter values and the default
parameters are the same like in the case of CopySample.

The CutSample attack drops a certain number of samples
periodically in the time domain. The value RemoveNumber

specifies the number of sample values, which are droped ev-
ery Remove distances. The range of RemoveNumber is
[1, lengthof(Si(x))] and has a default value of 7. The param-
eter Remove has a range of [RemoveNumber, lengthof(Si(x))]
and a default value of 1000. So(x) = Si(z+RemoveNumber)
and z = x mod (Remove − RemoveNumber). This attack
decreases the length of Si(x) depending on the attack pa-
rameters.

The ZeroCross attack sets all samples with an absolute value
less than the given threshold ZeroCross to zero. The range
of ZeroCross is [1, MaxQuantization] and has a default
value of 1000.

So(x) =

(

0 |Si(x)| < ZeroCross

Si(x) otherwise

The ZeroLength1 attack sends a given number of zero sam-
ples as output after the detection of a zero value in the input,
treating each channel independently. The value Z specifies
the number of sample values, which are intermediated at
the detection point (range [1, lengthof(Si(x))] and default
Z = 10):

So(x) =

(

0 = So(x + 1) = . . . = So(x + Z) Si(x) = 0

Si(x) otherwise

The ZeroLength2 attack is similar to ZeroLength1 but sends
a given number of zero samples to all channels after the
detection of a zero value in any channel of Si(x). The value
Z specifies the number of intermediated sample values and
has the same range and default value like ZeroLength1 :

So(x) =

(

0 = So(x + 1) = . . . = So(x + Z) Si(x) = 0

Si(x) otherwise

Both attacks (ZeroLength1 and ZeroLength2) increase the
length of the audio signal.

The ZeroRemoves attack removes all zero samples from Si(x)
and is the opposite to ZeroLength1 and ZeroLength2.

So(x) =

(

Si(x) Si(x) 6= 0

Si(x + 1) Si(x) = 0

The length of the audio signal is decreased.

The PitchScale attack scales the frequency linear up or down
without changing the tempo of the audio signal. This attack
uses the library SoundTouch [16] to alter the signal.

Instead of the linear pitch scaling of PitchScale, the at-
tack DynamicPitchScale scales the frequency nonlinear up
or down by using the library SoundTouch [16]. This attack
has 5 different modes [11], where the type and form of non-
linearity is specified.

The TimeStretch attack stretches or shrinks the signal play-
ing time linear without changing the pitch. This attack uses
the library SoundTouch [16] to alter the signal.

Instead of the linear time stretching attack TimeStretch, the

DynamicTimeScale attack stretches the time of Si(x) non-
linear without changing the pitch. This attack has 5 differ-
ent modes [11], where the type and form of nonlinearity is
specified.

The Exchange attack swaps consecutive samples in the audio
signal to test watermarking algorithms for their sensitivity
to the exact order of the samples.

So(x) =

(

Si(x + 1) z = 0

Si(x − 1) z = 1

Where z = x mod 2.

The Resampling attack adjusts the sample rate fSR to a new
sample rate. This attack uses the libsamplerate library [15]
to compute the sample values regarding the changed fSR

(default fSR = 22050).

The attack ExtraStereo works only for stereo audio signals.
This attack adds the average between the channels in a
frame to all samples in the frame. The idea is to test wa-
termarking algorithms that use channel difference in multi-
channel systems. This attack is based on the extra stereo
function of XMMS [22]: So(x) = Si(x) + (Si(x)−Avg(f)) ∗
AS. AS has a default value of 20.

The opposite of the ExtraStereo attack is theVoiceRemove

attack, which subtracts the average between the channels in
a frame from all samples in the frame also to test watermark-
ing algorithms that use channel difference in multi-channel
systems. This attack is therefore also based on the voice re-
move function of XMMS [22]: So(x) = Si(x)−Avg(f) ∗AS.

By evaluating a digital audio watermark, it is possible to
attack the watermark itself by using one of the single attacks
in SMFA to weak or destroy it. The user can specify the
attack and attack parameters (like strength). Another and
more comfortable way is the usage of attack profiles instead
of single attacks which will be discussed in the next section.
The goal is to pre-define the relevant single attacks, attack
parameters and attack strength and predefined application
scenarios for audio watermarking.

3. PROFILE ATTACKS
This section introduces the profile attacks which are ex-
pected from attackers alpha and β and their classification as
well as their assignment. Furthermore, we introduce three
basic and one extended profile definition and select two basic
profiles for our tests.

From the motivation, the most simple way to attack a dig-
ital watermark is a brute force attack by using all possible
attacks against the watermark. For each attack, SMBA has
default attack parameters, which can be used to evaluate the
digital audio watermark very quickly. It is also possible to
change and optimize the attack parameters to improve the
attack strength or attack transparency. Each attack is part
of a single evaluation process to determine the watermark-
ing algorithm weakness e.g. with which attack a watermark
can be broken. These single attacks are atomic signal mod-
ification processes. This scenario is also called single attack

process [3]. In this mode, the watermarked audio file under-
goes many separate instances of attacks and for each attack

a separate output audio file is produced. Each of these au-
dio files is only modified by a single attack (e.g. AddNoise,
PitchScale, Amplify or CutSample). This is useful to find
a single specific weakness of a watermark algorithm. By
using this attack method, the problem is twofold: Firstly,
for each attack we produce and evaluate an attacked audio
file to test the watermarking detection/verification comput-
ing a huge amount of data. Secondly, weaknesses caused by
combinations of audio effects or artefacts are not tested.

Therefore, another attack mode, called profile attack is in-
troduced by [3, 10] to run more than one attack in serial
order. An evaluation profile is an ordered sequence of pro-
cesses that may be applied to a signal, as shown in figure 2.
Each of the individual processes in the profile is defined by
its own set of parameters. While a profile may seem to be
merely an attack or process macro, profiles serve a very use-
ful purpose in benchmarking. Profiles allow the evaluation
system to model or simulate scenarios of interest to par-
ticular applications, like internet radio, audio production or
audio archives. Based of our classification of profiles [12], an
evaluation profile may be defined in terms of other (exist-
ing) profiles, which allow a complex process or attack to be
modeled as a sequence of previously-defined (or elementary)
processes (for example the DA/AD conversion).

.. .

Audiofile

Marked
Attack 1 Attack 2 Attack N

marked
evaluated

audiofile

scenario / profile

Figure 2: Evaluation Profile [12]

In [12] we defined a general profile assignment and classifi-
cation, which could be used from our both types of attackers
α and β.

Based on the variety of digital watermarking applications,
e.g. to protect the copyrights of users, to guarantee the in-
tegrity of content or to provide additional information em-
bedded in the media, each individual watermarking scheme
has specific parameters for robustness, transparency, capac-
ity, security and complexity. As the first two are relevant
for most applications we defined in [10] and shown in fig-
ure 3 the following main profiles with their assignment of
sub-profiles: High Quality Robust, Low Quality Robust,
High Quality Fragile and Low Quality Fragile. For example:
For an integrity watermark, we would evaluate the Degree

of Fragility for High Quality or Low Quality requirements.
For copyright protection, it is for example essential that the
watermarking algorithm is robust against digital analog con-
version and depending on the application scenario, we have
High and Low Quality requirements.

Annotation watermarking (sometimes also called caption
watermarking or illustration watermarking) is used to em-
bed supplementary information directly in the media, so
that the additional information is directly integrated and
cannot get easily lost (e.g. meta data like the audio descrip-
tion fields). Today, we find a wide range of applications for
annotation watermarking, especially also to watermark spe-
cific media objects like song sequences. As discussed in [21],

Hybrid Watermarks

High Quality Robust High Quality FragilLow Quality Robust Low Quality Fragil

Key Space

Long Time

Annotation

Calculation Time

Hidden Communication

Packet Loss

Watermark Detection

Coalition Resistence

DA/AD

Lossy Compression Rates

Degree of Fragility

Figure 3: Assignment of Profiles [14]

in comparison to copyright watermarking we do not expect
any dedicated removal, cryptographic or protocols attacks
in general. As the annotated data would lose value in most
cases there is no attack motivation and most security prop-
erties of the watermarking scheme have a minor relevance.
Even only a limited set of expected geometric attacks play
an important role, like robustness against add noise, cutting
and compression seems to be the most the important one.
Highly of interest are the parameters:

1. Capacity: how many bits can be spread over the whole
audio signal or directly stored in the related parts
within the audio.

2. Transparency: if there are noticeable artefacts in the
marked media the user will probably not accept the
media for professional and semi-professional purposes
like publishing and presentation.

Therefore capacity and transparency of the marked media
are fundamental requirements for annotation watermarks.

Requirements for annotation watermarking can be summa-
rized in an Annotation Watermarking Scheme (AWS) based
on the formalization of [21] for image annotation watermark-
ing. AWS is called annotation watermarking scheme if, and
only if

• AWS is a transparent watermarking scheme,

• AWS is (add noise, cutting, compression)-robust [21],

• AWS is a sequence of data (for audio) or object-based
(for images)

Therefore, we can formalize the annotation profile based
on [12] for benchmarking watermarking algorithms as fol-
lows: We define the extended annotation profile as:
PE−Annotation(Si||So||parameters)
parameters = (algorithm||options||quality)
The parameter algorithm defines the scheme used for em-
bedding process. The parameter options depends on the
embedding scheme and specifies the parameters for the em-
bedding process. To define the quality of the marked signal
(embedding transparency), the parameter quality is used.
This profile is associated to the main profiles High- and Low-
Quality Robust, as well as High- and Low-Quality Fragile
because the profile does not touch specific properties of ro-
bust and fragile watermarking schemes.

The annotation profile itself is an “Extended Profile”, be-
cause it is composed of the “Basic Profiles” Robustness Mea-

surement, Capacity Measurement and Transparency Mea-

surement. A basic profile provides a simple functionality,
which can be a part of an extended profile or a simple mea-
suring process. For the extended annotation profile, the as-
sociated basic profiles provide the measuring functionality
as is shown in figure 4 and introduced below.

In particular, the profile Capacity Measurement

PB−Capacity Measurement is a basic profile and needed to de-
termine the maximum capacity for embedding a message in
a signal. The transparency regarding the embedding process
is not considered in this profile. It is defined as:
PB−Capacity Measurement(Si||So||parameters)
parameters = (algorithm||options)
The algorithm defines the watermarking algorithm used
for embedding process and options are optional parameters
which depend and are specific for the embedding scheme.
Furthermore, it is important to differ between the overall
and total capacity representing the watermark and the pay-
load for the watermark information. For example, if a wa-
termarking algorithm introduces an error correction code
(ECC), the payload is less than the capacity, due to the
lost space of ECC. The measurement of the capacity of a
watermarking algorithm depends on the algorithm (working
domain) and the parameters. For capacity measurement,
there are different measure methods possible like bits per
second, bits per frame, bits per frequency range or bits per
frequency frame.

The profile Transparency Measurement

PB−Transparency Measurement is a basic profile and needed to
determine the transparency of a signal processing operation
like an embedding process. It is defined as:
PB−Transparency Measurement(Si||So||parameters)
parameters = (algorithm||options)
The algorithm defines the watermarking algorithm used
for embedding process and options are optional parameter
which depends and are specific for the embedding scheme.
The measurement of the transparency can be done by hear-
ing tests (subjective measurement of transparency) or com-
puter based measurement. To measure the audible distor-
tion of the embedding process, we use the ITU-R Recom-
mendation standard BS.1387 [6]. This standard provides
the definition for Perceptual Evaluation of Audio Quality
(PEAQ) [19] and can be used for rating of the quality of
audio signal modifications, which can be performed by a wa-
termark embedder. As implementation of the PEAQ, we use
the tool EAQUAL [4], which computes the Objective Dif-
ference Grade (ODG) by means of a neuronal network. The
computed ODG values are in a range from [−4, 0], where −4
is the worst (very annoying) 0 is the best (imperceptible).

The profile Robustness Measurement

PB−Robustness Measurement is a basic profile and needed to
determine the robustness of a watermark. It is defined as:
PB−Robustness Measurement(Si||So||attack)
The parameter attack is defined as the set of single attacks
(Ai1(x1)||Ai2(x2)|| · · · ||Ain(xn)), n > 0. There are all at-
tacks from SMBA possible, but as introduced for AWS the
focus can be set on add noise, cut and compress attacks.

Annotation

Robustness

Measurement

Capacity

Measurement

Transparency

Measurement

Figure 4: Annotation profile

Each of the three basic profiles, which are needed to define
the extended annotation profile measures a single property
of the magic watermarking triangle (robustness, capacity
and transparency). These properties are in concurrency to
each other and the improvement of one implies effects on
the other two.

In this paper, we set our focus on this annotation profile,
which is selected for implementing and evaluation of water-
marking algorithms for audio signals. The following section
introduces the current test set, test environment and the
principle work of our implementation. Based on our defini-
tions, we show on the example of annotation profile in the
next section how a profile can be implemented and tested
within SMBA.

4. TEST ENVIRONMENT FOR ANNOTA-
TION PROFILE

In this section, we present a possible test environment for
PE−Annotation().

The annotation profile gives users the opportunity to eval-
uate the embedding parameters (like strength or frequency
range) of a digital audio watermark to determine the audi-
ble distortion introduced into the audio signal by a certain
amount of embedded data.

As test material, we are using the well known Sound Quality
Assessment Material (SQAM) audio files [17], which have a
sampling frequency of fSR = 44.1 kHz, 2 channels and a
quantization of 16 bits.

In our test scenario, we set our focus on the basic profiles
Capacity Measurement and Transparency Measurement to
measure the embedding capacity regarding the transparency
and otherwise. We suppress the output for robustness by
setting the respective attack in SMBA to “none”. To em-
bed a watermark information, we use a watermarking algo-
rithm, which is a spread spectrum watermarking algorithm
working in frequency domain [5] based on the general algo-
rithm [2, 7].

The watermarking algorithm transforms the audio input sig-
nal in the frequency domain by performing a Fourier trans-
formation. The watermark information is spread over 128
bits and embedded in the frequency coefficients. The fre-
quency range, which is used for embedding, are parameters
of our implementation of the watermarking algorithm and
ranges from 1 Hz to 22050 Hz. After embedding the infor-
mation, the signal is transformed back to the time domain

to store it. For our test scenario, we decided to define the
“middle” of the frequency range at 10 kHz. To increase the
frequency range, we expand the frequency band symmetri-
cally. This means for example, when we set the frequency
range to 200 Hz, the watermark is embedded in the fre-
quency range of [9.9, 10.1] kHz.

The following figure 5 shows the general principle of the
tests. The original audio signal Si will be watermarked
by using the watermarking algorithm. The watermark al-
gorithm needs additional parameters p1 like watermarking
message, embedding strength and frequency range (both ef-
fect the final watermarking transparency). From the water-
marked output signal So the transparency will be measured
by computing the ODG value. Depending on the predefined
threshold p2, which defines the embedding transparency, the
embedding parameters are modified p′1 and the watermark
is embedded in Si with an increased or decreased embedding
strength. As we set our focus on the Capacity Measurement

and Transparency Measurement and do not perform Robust-

ness Measurements to demonstrate the overall profile based
testing, the retrieval (detection) of the watermark informa-
tion can be neglected.

parameters

parameters

SiS
o

p1

p2

p’1

Measurement

Transparency

Watermarking
Algorithm

ODG

Figure 5: Test environment

We define three test scenarios to evaluate the two basic pro-
files Capacity Measurement and Transparency Measurement,
which are like follow:
In the first scenario (a) we demonstrate the basic profile
Capacity Measurement and measure the possible embedding
frequency range for the watermarking algorithm depending
on the used audio content. We defined p2 with an ODG
threshold of −3 and the iteration step size, which increases
the frequency range, by 200 Hz.
The second test scenario (b) focus also the basic profile Ca-

pacity measurement, use the same watermark algorithm and
the same ODG threshold of −3, but each iteration cycle in-
creases the frequency range by 2000 Hz.
The last test scenario (c) uses the same watermarking al-
gorithm, but the frequency range is fixed for all tests and
set to 1000 Hz, which means a fixed embedding capacity.
The beginning of embedding frequencies is different (lower
and upper frequency bound). The frequency ranges are
[1000, 2000] , [2000, 3000] , · · · , [15000, 16000] and so on. We
measure the transparency of the embedding process by com-
puting the ODG values to perform the basic profile Trans-

parency Measurement.

For all tests, we estimate an audio content depended trans-
parency of the embedding process with a constant embed-
ding capacity as well as an audio content depended embed-
ding capacity with constant transparency (constant embed-
ding strength).

In the following, we introduce our test results for our sce-
narios (a), (b) and (c) as described above.

Table 2 contains our test results for test scenario (a), which
measures the frequency range of the watermarking algo-
rithm by using a predefined ODG value of −3 and an in-
creased frequency range of 200 Hz. This table shows the
computed ODG values for the audio SQAM files in an in-
creased frequency range. Depending on the audio content,
the quality level of an ODG value = −3 has a different
frequency range for different audio contents. The iteration
cycle is for example for vioo10 21, which corresponds with
a bandwidth of [7900, 12100] Hz and for bass47 20 (band-
width [8000, 12000] Hz) to get a quality of ODG ≈ −3. For
the audio file quar48 it requires 34 iterations (bandwidth
[6600, 13400] Hz). Furthermore, the frequency range, which
can be used to embed the watermark, is larger for the quar48

[6600, 13400] Hz) compared to vioo10 [7900, 12100] Hz) or
bass47 [8000, 12000] Hz). A larger frequency range, where
the watermark information is embedded, implies a higher
embedding capacity. Furthermore the test results show, that
different audio contents with identical watermarking algo-
rithm and watermarking algorithm parameters distort the
host audio to different degrees. Leading to varying maxi-
mum values before the distortion crosses our threshold of
−3 and ends the execution. The following figure 6 visualizes
the test results for all SQAM audio files, which are shown in
table 2. The measuring process stopped after crossing the
threshold of the ODG=−3.

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 5 10 15 20 25 30 35 40 45

O
D

G
 v

al
ue

Bandwith (cycle of iteration)

vioo10
quar48
bass47

frer07
gspi_1
gspi_2
horn23
sopr44
spfe49

 spme50
trpt21

Figure 6: Iterations by a frequency range of 200 Hz

Table 3 summarizes the test results regarding the test sce-
nario (b), which use the same watermarking algorithm with
a different granularity in the iteration steps (increasing the
bandwidth). The frequency range is increasing by a factor
of 10 (2000 Hz) per cycle rather than the previous 200 Hz
in test scenario (a). Since each cycle requires approximately

equal execution time, this can greatly decrease execution
time, if an exact answer is not required. The complexity of
the measurement of the transparency (ODG) regarding the
capacity (frequency range) is decreased for example from
34 to 4 cycles for the audio file quar48. This means, that
the computation time is decreased by the factor of 8.5 but
the correctness of the test results is decreased too. The
threshold of the measured transparency is set to ODG =−3
and by expanding the frequency range of 2000 Hz per cycle,
the ODG value of vioo10 is −3.24 in the 3 iteration step.
The audio files frer47, gspi 1, horn23 and trpt21 have in
the first iteration an ODG value less than −3. These audio
files, which have as audio content single instruments, have
a very sensitive transparency. Other audio files like spfe49

or spme50 need 5 iteration steps in test scenario (b) and
the ODG values are −3.18 for both compared to an ODG
value of −3.0 and iteration steps of about 45 in test scenario
(a). Although within test scenario (b) we could reduce the
overall computation time, this caused higher errors to deter-
mine the optimal frequency range. The dependence of the
audio content is the same like in test scenario (a): speech
is more insensible than single instruments. The following
figure 7 shows the visualization of our test results based on
table 3. The single instruments frer47, gspi 1, horn23 and
trpt21 are shown on the Y-axis, because there was no second
iteration step necessary, which expands the frequency range
by decreasing the transparency.

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

O
D

G
 v

al
ue

Bandwith (cycle of iteration)

vioo10
quar48
bass47

frer07
gspi_1
gspi_2
horn23
sopr44
spfe49

 spme50
trpt21

Figure 7: Iterations by a frequency range of 2000 Hz

Table 4 shows our test results for the test scenario (c), which
measured the embedding transparency by a fixed embedding
frequency range which implies a fixed embed capacity (basic
profile Transparency Measurement). The frequency range
for the embedding process for all audio files is as embed-
ding parameter set to the fix value of 1000 Hz. The differ-
ence between the iteration steps is the used frequency band,
which is shifted from 1000 Hz up to 15000 Hz. For all audio
files, the embedding transparency decrease in the lower fre-
quency band (less than 2000 Hz) or higher frequency band
(higher than 7000 Hz). If the embedding frequency band
begins in the range of 2000 Hz to 7000 Hz, the embedding
transparency is more sensitive than lower than 2000 Hz or
higher than 7000 Hz. This basic global characteristic of all
graphs such as the overall trend and the minimum in the
area around 3 kHz and local maximum in the area of 4-6

kHz are typical characteristics of a psycho acoustic model
which may be explained by the psycho acoustic model used
by ODG [23]. Figure 8 visualizes the test results presented
in table 4. It can be seen, that the audio files, where the
audio content are single instruments (frer47, gspi 1, horn23

and trpt21), have a worse transparency than the other audio
files with for e.g. spoken text.

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 2 4 6 8 10 12 14

O
D

G
 v

al
ue

Beginning of Frequency Band in kHz

vioo10
quar48
bass47

frer07
gspi_1
gspi_2
horn23
sopr44
spfe49

 spme50
trpt21

Figure 8: Shifted frequency band

Our three tests demonstrate the usability of the two basic
profiles (Capacity Measurement and Transparency Measure-

ment) to evaluate digital audio watermarking algorithms for
the annotation applications. For our example watermarking
algorithm we could determine, that the characteristic of the
audio content has an influence to the computed capacity and
transparency values.

The follow section concludes the paper and introduces future
work.

5. CONCLUSION AND FUTURE WORK
In this paper, firstly we introduced and classified the single
attacks from StirMark for Audio. Secondly, the profile at-
tacks for real world scenarios are introduced and enhanced
by new defined extended profile PE−Annotation and basic
profiles
PB−Capacity Measurement, PB−Transparency Measurement and
PB−Robustness Measurement. The transparency and capac-
ity measurement profiles are selected to demonstrate the
methodology how to evaluate a watermarking algorithm within
profiles of SMBA. Our example watermarking algorithm is
a spread spectrum algorithm working in frequency domain.
The contribution of this article is threefold. Firstly, we have
introduced a reference profile for one specific application:
annotation watermarking. Secondly, we have suggested an
evaluation methodology for this scenario, which is based
on a fixed capacity boundary and iterative parameteriza-
tion of embedding bandwidth, controlled by a feedback of
ODG transparency measure. Our experimental evaluations
are further based on three different settings of iteration step
sizes as the third contribution can be summarized as follows:
In all three test scenarios the transparency of audio water-
marks showed a high dependency on the characteristics of

the audio material and it is shown, that single instruments
are in most cases more effected than the other audio test
files from SQAM.
Future work will include the entire process chain, including a
robustness measurement and the watermark detector. With
this extension and the methodology presented in this paper,
future investigations with respect to the transparency of an-
notation watermarks will be performed. In context of this
task, we will also consider to evaluate alternative watermark
techniques, profiles and also subjective transparency tests.

6. ACKNOWLEDGMENTS
The work about single SMFA attacks described in this pa-
per has been supported in part by the European Commis-
sion through the IST Programme under Contract IST-2002-
507932 ECRYPT. The information in this document is pro-
vided as is, and no guarantee or warranty is given or implied
that the information is fit for any particular purpose. The
user thereof uses the information at its sole risk and liability.

Effort for the profile based evaluation is sponsored by the
Air Force Office of Scientific Research, Air Force Materiel
Command, USAF, under grant number FA8655-04-1-3010.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Air Force
Office of Scientific Research or the U.S. Government.

Furthermore, basic ideas presented here come from the pre-
vious work done in Illustration Watermarking and we would
like to thank Thomas Vogel for his stimulating discussions
and his work.

7. REFERENCES
[1] Emmanuel C. Ifeachor, Barrie W. Jervis, Digital Signal

Processing, Prentice Hall, ISBN 0201 59619 9, 2002

[2] Nedeljko Cvejic, Algorithms for Audio Watermarking

and Steganography, Department of Electrical and
Information Engineering, Information Processing
Laboratory, University of Oulu, 2004

[3] Jana Dittmann, Martin Steinebach, Andreas Lang,
Sascha Zmudzinsky, Advanced audio watermarking

benchmarking, San Jose, CA, USA Bellingham,
Washington, USA, SPIE 2004, vol. 5306

[4] EAQUAL,
http://home.wanadoo.nl/ w.speek/eaqual.htm, 2004

[5] Zaid Ghazal, Umsetzung und Vergleich von digitalen

Audio Wasserzeichenalgorithmen, diploma thesis at
Otto-von-Guericke University of Magdeburg, 2005

[6] ITU-R Recommendation BS.1387, Method for Objective

Measurements of Perceived Audio Quality, Dec. 1998

[7] F.Y. Duan, I. King, A Short Summary of Digital

Watermarking Techniques for Multimedia Data,
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Shatin, N.T., Hong
Kong, China

[8] M. Kutter, F.A.P. Petitcolas, A fair benchmark for

image watermarking system, In SPIE Electronic
Imaging, Security and Watermarking of Multimedia
Contents, Vol. 3657, San Jose, CA, USA, 25-27 January
1999

[9] M. Kutter, S. Voloshynovskiy and A. Herrigel,
Watermark copy attack, In Ping Wah Wong and
Edward J. Delp eds., IS&T/SPIE’s 12th Annual
Symposium, Electronic Imaging 2000: Security and
Watermarking of Multimedia Content II, Vol. 3971 of
SPIE Proceedings, San Jose, California USA, 23-28
January 2000

[10] Andreas Lang, Jana Dittmann, StirMark and profiles:

from high end up to preview scenarios, Reviewed Paper,
IFIP/GI Workshop on Virtual Goods, Ilmenau
(Germany), 28-29 May 2004, online publication
available from
http://virtualgoods.tu-ilmenau.de/2004/program.html

[11] Andreas Lang, Ryan Spring, StirMark Benchmark for

Audio - Attack Description, internal report, 2004

[12] A. Lang, J. Dittmann, E. T. Lin, E. J. Delp,
Application Oriented Audio Watermark Benchmark

Service, to appear in SPIE 2005, San Jose

[13] Benoit Macq, Jana Dittmann, Edward J. Delp,
Benchmarking of Image Watermarking Algorithms for

Digital Rights Management, Proceedings of the IEEE,
Special Issue on: Enabling Security Technology for
Digital Rights Management, pp. 971-984, Vol. 92 No. 6,
June 2004

[14] D.D.Rife, J.Vanderkooy, Transfer-Function

Measurement with Maximum-Length Sequences, JAES,
Vol. 37, June 1989

[15] Secret Rabbit Code (aka libsamplerate),
http://www.mega-nerd.com/SRC/, 2004

[16] SoundTouch Sound Processing Library,
http://sky.prohosting.com/oparviai/soundtouch/, 2004

[17] SQAM - Sound Quality Assessment Material,
http://sound.media.mit.edu/mpeg4/audio/sqam/, 2004

[18] Steven W. Smith, The Scientist and Engineer’s Guide

to Digital Processing, California Technical Publishing,
ISBN 0 9660176 3 3, 1997

[19] T. Thiede, W. C. treurniet, R. Bitto, C. Schmidmer,
T. Sporer, J. G. Beerends, C. Colomes, M. Keyhl,
G. Stoll, K. Brandeburg, B. Feiten, PEAQ – The ITU

Standard for Objective Measurement of Perceived Audio

Quality, J. Audio Eng. Soc., vol. 48, pp. 3-29, Jan-Feb.
2000

[20] Visit Audacity, Inc, http://www.audacity.com/, 2004

[21] Thomas Vogel, Jana Dittmann, Illustration

Watermarking: An Object Based Approach for Digital

Images, to appear in SPIE 2005, San Jose

[22] X Multimedia System, http://www.xmms.com/, 2004

[23] Eberhard Zwicker, Hugo Fastl, Psychoacoustics. Facts

and Models, Springer, Berlin, November 2001,
ISBN 3 540 65063 6

Table 2: Annotation with increased bandwidth of 200 Hz with unspecified watermark
Cycle Frequency [Hz] vioo10 quar48 bass47 frer07 gspi 1 gspi 2 horn23 sopr44 spfe49 spme50 trpt21

1 9900-10100 -0.68 -0.89 -0.88 -1.28 -1.29 0.01 -1.64 -0.62 -0.96 0.04 -0.01
2 9800-10200 -1.16 -0.79 -0.80 -2.2 -1.65 -1.43 -2.03 -0.81 -0.94 -0.71 -1.93
3 9700-10300 -1.43 -1.14 -1.37 -2.37 -2.21 -1.36 -2.42 -1.23 -1.2 -0.65 -2.08
4 9600-10400 -1.63 -1.30 -1.56 -2.54 -2.42 -1.72 -2.63 -1.43 -1.24 -1.06 -2.35
5 9500-10500 -1.83 -1.49 -1.76 -2.75 -2.64 -1.88 -2.89 -1.67 -1.56 -1.26 -2.59
6 9400-10600 -1.97 -1.65 -1.92 -2.84 -2.72 -2.03 -2.97 -1.85 -1.57 -1.41 -2.71
7 9300-10700 -2.09 -1.79 -2.05 -2.92 -2.8 -2.1 -3.06 -2.0 -1.74 -1.53 -2.81
8 9200-10800 -2.23 -1.89 -2.26 -3.06 -2.96 -2.18 -2.16 -1.84 -1.66 -2.93
9 9100-10900 -2.33 -1.96 -2.33 -3.01 -2.26 -2.26 -1.94 -1.77 -3.01
10 9000-11000 -2.41 -2.05 -2.44 -2.33 -2.34 -2.03 -1.8
11 8900-11100 -2.52 -2.16 -2.52 -2.35 -2.46 -2.1 -1.97
12 8800-11200 -2.63 -2.22 -2.58 -2.41 -2.53 -2.19 -1.97
13 8700-11300 -2.66 -2.26 -2.63 -2.45 -2.59 -2.23 -2.04
14 8600-11400 -2.71 -2.37 -2.75 -2.49 -2.65 -2.29 -2.12
15 8500-11500 -2.79 -2.42 -2.81 -2.51 -2.72 -2.32 -2.19
16 8400-11600 -2.81 -2.47 -2.85 -2.46 -2.77 -2.36 -2.24
17 8300-11700 -2.89 -2.50 -2.88 -2.48 -2.82 -2.4 -2.28
18 8200-11800 -2.91 -2.56 -2.96 -2.51 -2.89 -2.44 -2.33
19 8100-11900 -2.96 -2.59 -2.99 -2.54 -2.92 -2.47 -2.35
20 8000-12000 -2.99 -2.63 -3.01 -2.55 -2.99 -2.49 -2.39
21 7900-12100 -3.03 -2.70 -2.56 -3.02 -2.52 -2.43
22 7800-12200 -2.70 -2.59 -2.53 -2.47
23 7700-12300 -2.75 -2.61 -2.58 -2.5
24 7600-12400 -2.78 -2.61 -2.6 -2.53
25 7500-12500 -2.80 -2.63 -2.59 -2.57
26 7400-12600 -2.82 -2.65 -2.63 -2.58
27 7300-12700 -2.85 -2.66 -2.66 -2.58
28 7200-12800 -2.87 -2.66 -2.66 -2.63
29 7100-12900 -2.90 -2.66 -2.68 -2.65
30 7000-13000 -2.93 -2.67 -2.7 -2.67
31 6900-13100 -2.96 -2.65 -2.7 -2.7
32 6800-13200 -2.98 -2.67 -2.75 -2.71
33 6700-13300 -2.98 -2.66 -2.74 -2.74
34 6600-13400 -3.01 -2.66 -2.77 -2.78
35 6500-13500 -2.68 -2.75 -2.76
36 6400-13600 -2.69 -2.81 -2.79
37 6300-13700 -2.71 -2.78 -2.8
38 6200-13800 -2.71 -2.79 -2.82
39 6100-13900 -2.71 -2.81 -2.83
40 6000-14000 -2.73 -2.82 -2.87
41 5900-14100 -2.75 -2.85 -2.88
42 5800-14200 -2.77 -2.88 -2.91
43 5700-14300 -2.78 -2.89 -2.92
44 5600-14400 -2.78 -2.88 -2.93
45 5500-14500 -3.88 -2.95 -3.0
46 5400-14600 -2.92 -3.0
47 5300-14700 -2.97
48 5200-14800 -3.01

Table 3: Annotation with increased bandwidth of 2000 Hz with unspecified watermark
Cycle Frequency [Hz] vioo10 quar48 bass48 frer47 gspi 1 gspi 2 horn23 sopr44 spfe49 spme50 trpt21

1 9000-11000 -2.41 -2.05 -2.44 -3.18 -3.03 -2.33 -3.13 -2.34 -2.03 -1.8 -3.08
2 8000-12000 -2.99 -2.63 -3.01 -2.55 -2.99 -2.49 -2.39
3 7000-13000 -3.24 -2.93 -2.67 -3.22 -2.7 -2.67
4 6000-14000 -3.10 -3.04 -2.82 -2.87
5 5000-15000 -3.18 -3.18

Table 4: Annotation with moved frequency band
Cycle Frequency [Hz] vioo10 quar48 bass48 frer47 gspi 1 gspi 2 horn23 sopr44 spfe49 spme50 trpt21

1 1000-2000 -1.87 -1.49 -1.53 -3.03 -3.13 -1.73 -1.88 -1.56 -0.78 -0.7 -1.88
2 2000-3000 -2.46 -2.16 -2.24 -3.34 -2.91 -1.7 -2.81 -2.26 -1.47 -1.14 -2.76
3 3000-4000 -2.84 -2.52 -2.71 -3.16 -3.1 -2.23 -3.2 -2.51 -1.78 -1.46 -3.15
4 4000-5000 -2.64 -2.3 -2.55 -2.95 -3.02 -2.12 -3.13 -2.37 -1.63 -1.43 -2.9
5 5000-6000 -2.46 -2.03 -2.37 -2.65 -2.82 -2.16 -2.91 -2.06 -1.66 -1.58 -2.34
6 6000-7000 -2.38 -1.89 -2.28 -3.0 -2.86 -2.04 -3.12 -1.99 -1.56 -1.49 -2.44
7 7000-8000 -2.34 -1.97 -2.32 -3.07 -2.76 -1.92 -3.11 -2.0 -1.7 -1.46 -2.61
8 8000-9000 -2.17 -1.85 -2.15 -2.95 -2.72 -1.94 -3.02 -1.86 -1.6 -1.42 -2.61
9 9000-10000 -1.91 -1.64 -1.97 -2.79 -2.66 -1.92 -2.91 -1.73 -1.52 -1.32 -2.6
10 10000-11000 -1.64 -1.32 -1.68 -2.61 -2.5 -1.8 -2.73 -1.63 -1.34 -1.19 -2.48
11 11000-12000 -1.46 -1.11 -1.49 -2.37 -2.19 -1.58 -2.44 -1.5 -1.26 -1.0 -2.25
12 12000-13000 -1.13 -0.8 -1.2 -2.05 -1.71 -1.25 -1.98 -1.18 -0.87 -0.77 -1.89
13 13000-14000 -1.19 -1.04 -1.05 -1.67 -1.42 -1.05 -1.38 -1.21 -1.1 -0.93 -1.44
14 14000-15000 -0.47 -0.31 -0.48 -1.23 -0.67 -0.55 -0.87 -0.41 -0.39 -0.35 -0.94
16 15000-16000 -0.25 -0.17 -0.26 -0.91 -0.32 -0.3 -0.43 -0.18 -0.22 -0.18 -0.61

